

Summary of Lecture 2

- Simple structural processing techniques like transposing, fl cropping.
- Simple image statistics like sample mean and sample varia
- Histograms.
	- $-h_A(l)$: number of pixels in image A that have the val
	- $-$ Histograms tell us how the values of individual pi image are "distributed".
	- Two different images may have the same histogram.
- Point processing techniques.

 $-B(i, j) = g(A(i, j))$

• In matlab you can also compute $g(l)$ as an array and t $>> B = g(A + 1);$

Dynamic Range, Visibility and Contrast Enhanc

Close-by pixel values are difficult to distinguish

- Contrast enhancing point functions we have discussed earl the dynamic range occupied by certain "interesting" pixe the input image.
- These pixel values in the input image may be difficult to and the goal of contrast enhancement is to make them "mo in the output image.
- Don't forget we have a limited dynamic range $(0-255)$ at our

Point Functions and Histograms

- In general a point operation/function $B(i, j) = g(A(i, j))$ results histogram $h_B(l)$ for the output image that is different from
- The relationship between $h_B(l)$ and $h_A(l)$ may not be straightforward. as we have already discussed in Lecture 2.
- You $must$ learn how to calculate $h_B(l)$ given $h_A(l)$ and the point $g(l)$:
	- $-$ Exactly: Usually via writing a matlab script that com from $h_A(l)$ and $g(l)$.
	- Approximately: By sketching $h_B(l)$ given the sketches and $g(l)$.

B(i j)=10 round(A(i j)/10)

© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brookly

Stretched/Compressed Pixel Value Ranges

- $B(i, j) = q(A(i, j))$ Suppose $g(l)$ represents an *overall* point function which inc trast stretching/compression, emphasis/de-emphasis, rour malizing etc.
- Given an image matrix A, $B(i, j) = g(A(i, j))$ is also an image
- \bullet $g(l)$ may not be "continuous" or connected and it also m composed of connected line segments.
- How do we determine which pixel value ranges $g(l)$ stretches
	- We can usually assume that in small ranges $g(l)$ may imated by piecewise linear, connected line segments. ing the implied α_i and testing $|\alpha_i| \stackrel{>}{<} 1$ should help us stretched/compressed ranges.

Brief Note on Image Segmentation

- If one views an image as depicting a scene composed c objects, regions, etc. then segmentation is the decompos image into these objects and regions by associating or "labell pixel with the object that it corresponds to.
- Most humans can easily se[gment an image.](#page-6-0)
- Computer automated segmentation is a difficult problem sophisticated algorithms that work in tandem.
- "High level" segmentation, such as segmenting humans, from an image is a very difficult problem. It is still considere and is actively researched.
- Based on point processing, histogram based image segmer very simple algorithm that is sometimes utilized as an initithe "true" segmentation of an image.

Histogram Based Image Segmentation

- For a given image, decompose the range of pixel values $(0, 0, 1)$ "discrete" intervals $R_t = [a_t, b_t], t = 1, \ldots, T$, where T is the tot of segments.
- \bullet Each R_t is typically obtained as a range of pixel values that \bullet to a hill of $h_A(l)$.
- "Label" the pixels with pixel values within each R_t via a poin
- Main Assumption: Each object is assumed to be compose with $similar$ pixel values.

Example

- $R_1 = [0, 14], R_2 = [15, 15], R_3 = [16, 99], R_4 = [100, 149], R_5 = [150, 149],$ [221, 255].
- Labeling in matlab: $>> B1 = 255 * ((A >= 0) \& (A <= 14));$, etc.

Example - contd.

 $B1 (R_1=[0,14])$

B2 (R₂=[15,15])

 $B3 (R_3 = [16, 99])$

Example - contd.

 $\textsf{B4}\,(\mathsf{R}_{\mathbf{4}}\textsf{=[100,149]})$

B5 (R₅=[150,220])

 $B6 (R_6 = [221, 255])$

Example - contd.

B (Histogram Segm

- Compute the sample mean of each segment $(\gg m1 = sum(sum(B1.*A))/sum(sum(B1)), etc.).$
- $C = m1 \times B1 + m2 \times B2 + m3 \times B3 + m4 \times B4 + m5 \times B5 + m6 \times B6$. $B(i, j) = g_s^C$ ${}_{s}^{C}(C(i,j)).$

Limitations

- Histogram based segmentation operates on each image pixe dently. As mentioned earlier, the main assumption is th must be composed of pixels with similar pixel values.
- This independent processing ignores a second important Pixels within an object should be $spatially$ connected. For B3, B4, B5 group spatially disconnected objects/regions into segment.
- In practice, one would use histogram based segmentation with other algorithms that make sure that computed objed are spatially connected.

Histogram Equalization

- \bullet For a given image A, we will now design a special point fur which is called the histogram equalizing point function for
- If $B(i, j) = g_A^e(A(i, j))$, then our aim is to make $h_B(l)$ as uniform possible *irrespective* of $h_A(l)$!
- Histogram equalization will help us:
	- Stretch/Compress an image such that:
		- $*$ Pixel values that occur frequently in A occupy a bigger dynamic i.e., get stretched and become more visible.
		- ∗ Pixel values that occur infrequently in **A** occupy a smaller dynamic i.e., get compressed and become less visible.
	- $-$ Compare images by "mapping" their histograms into histogram and sometimes "undo" the effects of some processing.
- \bullet The techniques we are going to use to get $g_A^e(l)$ are also ap histogram modification/specification.

Continuous Amplitude Random Variables

• Let χ be a continuous amplitude random variable $\chi \in (-\infty, \mathbb{R})$

 $f_{\chi}(x)$: the probability density function of χ , $F_{\chi}(x)$: the probability distribution function of χ .

$$
f_{\chi}(x)dx = \text{Probability}(x \le \chi < x + dx)
$$
\n
$$
F_{\chi}(x) = \text{Probability}(\chi \le x)
$$

• Properties:

$$
F_{\chi}(x) = \int_{-\infty}^{x} f_{\chi}(t)dt \Rightarrow \frac{dF_{\chi}(x)}{dx} = f_{\chi}(x)
$$

$$
f_{\chi}(x) \ \geq \ 0 \Rightarrow F_{\chi}(x) \geq 0, \ F_{\chi}(x+dx) - F_{\chi}(x) \geq 0
$$

 $F_{\chi}(x)$ is a non-decreasing function.

$$
\int_{-\infty}^{+\infty} f_{\chi}(t)dt = 1 \Rightarrow f_{\chi}(x)|_{x=+/-\infty} = 0
$$

$$
F_{\chi}(x)|_{x=-\infty} = 1
$$

$$
F_{\chi}(x)|_{x=-\infty} = 0
$$

Example

© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brookly

Calculating the Mean and Variance

• Mean (μ) :

$$
\mu = \int_{-\infty}^{+\infty} x f_{\chi}(x) dx
$$

Analogy: Average price of apples

- "I bought $f_{\chi}(x)dx$ many apples at a price of x, ..."
- "Total price I paid: $P = \int_{-\infty}^{+\infty} x f_{\chi}(x) dx$.
- $-$ "Total number of apples I purchased: $N = \int_{-\infty}^{+\infty} f_{\chi}(x) dx$
- "My average price for the overall purchase: $\mu = P/N$.

• Variance (σ^2) :

$$
\sigma^2 = \int_{-\infty}^{+\infty} (x - \mu)^2 f_{\chi}(x) dx
$$

Main Derivation

- We will now obtain a new random variable $Y(f_Y(y), F_Y(y))$ a of the random variable χ , i.e., $Y = g(\chi)$.
- We wish to make Y a uniform random variable (a random varia uniform probability density function) irrespective of the density of χ .
- Our main assumption will be:
	- Assume $F_{\chi}(x)$ is a continuous and strictly increasing (compared to the general case of non-decreasing as in
	- Note that such an $F_{\chi}(x)$ is one-to-one which will allow its inverse $F_{\rm v}^{-1}$ $x^{-1}(x)$.

Main Derivation - contd.

- Let $Y = F_\chi(\chi)$, i.e., $g(\chi) = F_\chi(\chi)$. Note that $Y \in [0,1]$ and $y \notin [0, 1]$.
- Let us derive $F_Y(y)$ for $y \in [0,1]$:

$$
F_Y(y) = \text{Probability}(Y \le y)
$$

= Probability $(F_\chi(\chi) \le y)$
= Probability $(\chi \le F_\chi^{-1}(y))$
= $F_\chi(F_\chi^{-1}(y))$
= y

where the next to last step follows from Equation 2.

• Using Equation 3 and $f_Y(y) = 0$ if $y \not\in [0, 1]$, we have

$$
f_Y(y) = \begin{cases} 0 & y < 0, \ y > 1 \\ 1 & y \in [0, 1] \end{cases}
$$

i.e., Y is a uniform random variable with $a = 0$ and $b = 1$.

Discrete Amplitude Random Variables

- Let Θ be a discrete amplitude random variable. $\Theta = x_i$ for some $i, \ldots, -1, 0, 1, \ldots$. x_i are a sequence of possible values for Θ .
	- $p_{\Theta}(x_i)$: the probability mass function of Θ , $F_{\Theta}(x_i)$: the probability distribution function of Θ .

$$
p_{\Theta}(x_i)
$$
 = Probability($\Theta = x_i$)
 $F_{\Theta}(x_i)$ = Probability($\Theta \le x_i$)

• Properties:

$$
F_{\Theta}(x_i) = \sum_{j=-\infty}^{j=i} p_{\Theta}(x_j)
$$

\n
$$
p_{\Theta}(x_i) = F_{\Theta}(x_i) - F_{\Theta}(x_{i-1}) \ge 0
$$

\n
$$
\sum_{j=-\infty}^{j=\infty} p_{\Theta}(x_j) = 1
$$

Example

The probability mass and distribution functions for a uniform, di plitude random variable.

- Let $\Omega = F_{\Theta}(\Theta)$. $\Omega = y_i = F_{\Theta}(x_i)$ for some $i, \ldots, -1, 0, 1, \ldots$.
- Our earlier derivation for continuous amplitude random vari not "work" for discrete amplitude random variables.
- In general Ω is not a uniform random variable.

Histogram as a Probability Mass Function

- \bullet For a given image A, consider the image pixels as the real a discrete amplitude random variable " A ".
	- For example suppose we toss a coin (Heads=255 and Tails times and record the results as an N by M image matrix.
- Define the sample probability mass function $p_A(l)$ as the pro a randomly chosen pixel having the value l .

$$
p_A(l) = \frac{h_A(l)}{NM}
$$

• Note that the sample mean and variance we talked about 2 can be calculated as:

$$
m_A = \sum_{l=0}^{255} l p_A(l)
$$

$$
\sigma_A^2 = \sum_{l=0}^{255} (l - m_A)^2 p_A(l)
$$

Histogram Equalizing Point Function

- Let $g_1(l) = \sum_{k=0}^{l} p_A(k)$. Note that $g_1(l) \in [0, 1]$.
- $g_A^e(l) = \text{round}(255g_1(l))$ is the histogram equalizing point funct image A.
- Image $A \Rightarrow$ "equalize image" $\Rightarrow B(i,j) = g_A^e(A(i,j)).$
- As we have seen, in general $p_B(l)$ will not be a uniform mass function but hopefully it will be close.
- In matlab $>>$ help filter to construct $g_A^e(A(i,j))$ fast.
- Assuming you gAe is an array that contains the computed can use $>> B = gAe(A + 1)$; to obtain the equalized image.

Stretching and Compression

 \bullet $g_A^e(l)$ stretches the range of pixel values that occur frequent \bullet $g_A^e(l)$ compresses the range of pixel values that occur infrequently A.

Example

Comparison/"Undoing"

Instead of comparing ${\bf A}$ and ${\bf C},$ compare their equalized versions.

Comparison/"Undoing" - contd.

 $\mathsf{B}(\mathsf{i}\,\mathsf{j})\mathsf{=g}_{\mathsf{A}}^{\mathsf{e}}(\mathsf{A}(\mathsf{i}\,\mathsf{j}))$

 $\mathsf{D}(\mathsf{i}\,\mathsf{j})\mathsf{=g}^{\mathsf{e}}_{\mathsf{C}}(\mathsf{C}(\mathsf{i}\,\mathsf{j}))$

[Sum](#page-21-0)[mary](#page-22-0)

- In this lecture we learnt about simple histogram based image tation and its limitations.
- We reviewed continuous and discrete amplitu[de random](#page-29-0) variables used their properties to derive the histogram equalizing poir
- We also defined the relationship between image histograms ple probability mass functions of images.
- Finally we looked at some equalization examples and learn expect from a histogram equalizing point function when an image.
- Please read Chapter 7, pages 241-244 in the textbook.

Homework III

1. The histogram of an image **A** is $h_A(l) = l$, $(l = 0, \ldots, 255)$. A point function

$$
g(l) = \begin{cases} l & 0 \le l < 128 \\ 255 - l & 128 \le l \le 255 \end{cases}
$$

Let $B(i, j) = A(i, j)$. Calculate $h_B(l)$ without a computer. Show all your work.

- 2. Implement histogram based segmentation on your image. Identify the peaks of y with the "objects" that they correspond to. Show your image, its histogram, the ranges Show the identified objects. Finally construct the histogram segmented image.
- 3. Derive the mean and variance for continuous amplitude Gaussian and uniform density.
- 4. Equalize your image. Show before and after images and histograms. Is the his equalized image uniform? Which regions got stretched/compressed? (Be as accurated)
- 5. Implement the Comparison/"Undoing" example on your image.

References

[1] A. K. Jain, Fundamentals of Digital Image Processing. Englewood Cliffs, NJ: Prentice Hall, 1989.