
Summary of Lecture 2

• Simple structural processing techniques like transposing, flipping and
cropping.

• Simple image statistics like sample mean and sample variance.

• Histograms.

– hA(l): number of pixels in image A that have the value l.

– Histograms tell us how the values of individual pixels in an
image are “distributed”.

– Two different images may have the same histogram.

• Point processing techniques.

– B(i, j) = g(A(i, j))

• In matlab you can also compute g(l) as an array and then utilize
>> B = g(A + 1);.
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Dynamic Range, Visibility and Contrast Enhancement

• Contrast enhancing point functions we have discussed earlier expand
the dynamic range occupied by certain “interesting” pixel values in
the input image.

• These pixel values in the input image may be difficult to distinguish
and the goal of contrast enhancement is to make them “more visible”
in the output image.

• Don’t forget we have a limited dynamic range (0−255) at our disposal.
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Point Functions and Histograms

• In general a point operation/function B(i, j) = g(A(i, j)) results in a new
histogram hB(l) for the output image that is different from hA(l).

• The relationship between hB(l) and hA(l) may not be straightforward
as we have already discussed in Lecture 2.

• You must learn how to calculate hB(l) given hA(l) and the point function
g(l):

– Exactly: Usually via writing a matlab script that computes hB(l)

from hA(l) and g(l).

– Approximately: By sketching hB(l) given the sketches for hA(l)

and g(l).
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“Unexpected” Effect of some Point Functions

− B has ∼ 10 times as

few distinct pixel values.

− Note also the vertical axis

scaling in hB(l).
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Stretched/Compressed Pixel Value Ranges

• B(i, j) = g(A(i, j))

Suppose g(l) represents an overall point function which includes con-
trast stretching/compression, emphasis/de-emphasis, rounding, nor-
malizing etc.

• Given an image matrix A, B(i, j) = g(A(i, j)) is also an image matrix.

• g(l) may not be “continuous” or connected and it also may not be
composed of connected line segments.

• How do we determine which pixel value ranges g(l) stretches/compresses?

– We can usually assume that in small ranges g(l) may be approx-
imated by piecewise linear, connected line segments. Calculat-
ing the implied αi and testing |αi| >

< 1 should help us determine
stretched/compressed ranges.
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Brief Note on Image Segmentation

• If one views an image as depicting a scene composed of different
objects, regions, etc. then segmentation is the decomposition of an
image into these objects and regions by associating or “labelling” each
pixel with the object that it corresponds to.

• Most humans can easily segment an image.

• Computer automated segmentation is a difficult problem, requiring
sophisticated algorithms that work in tandem.

• “High level” segmentation, such as segmenting humans, cars etc.,
from an image is a very difficult problem. It is still considered unsolved
and is actively researched.

• Based on point processing, histogram based image segmentation is a
very simple algorithm that is sometimes utilized as an initial guess at
the “true” segmentation of an image.
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Histogram Based Image Segmentation

• For a given image, decompose the range of pixel values (0, . . . , 255) into
“discrete” intervals Rt = [at, bt], t = 1, . . . , T , where T is the total number
of segments.

• Each Rt is typically obtained as a range of pixel values that correspond
to a hill of hA(l).

• “Label” the pixels with pixel values within each Rt via a point function.

• Main Assumption: Each object is assumed to be composed of pixels
with similar pixel values.
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Example

• R1 = [0, 14], R2 = [15, 15], R3 = [16, 99], R4 = [100, 149], R5 = [150, 220], R6 =

[221, 255].

• Labeling in matlab: >> B1 = 255 ∗ ((A >= 0)&(A <= 14));, etc.
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Example - contd.
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Example - contd.
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Example - contd.

• Compute the sample mean of each segment
(>> m1 = sum(sum(B1. ∗ A))/sum(sum(B1)), etc.).

• C = m1×B1 + m2×B2 + m3×B3 + m4×B4 + m5×B5 + m6×B6.

B(i, j) = gC
s (C(i, j)).
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Limitations

• Histogram based segmentation operates on each image pixel indepen-
dently. As mentioned earlier, the main assumption is that objects
must be composed of pixels with similar pixel values.

• This independent processing ignores a second important property:
Pixels within an object should be spatially connected. For example,
B3, B4, B5 group spatially disconnected objects/regions into the same
segment.

• In practice, one would use histogram based segmentation in tandem
with other algorithms that make sure that computed objects/regions
are spatially connected.

c© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY 12



Histogram Equalization

• For a given image A, we will now design a special point function ge
A(l)

which is called the histogram equalizing point function for A.

• If B(i, j) = ge
A(A(i, j)), then our aim is to make hB(l) as uniform/flat as

possible irrespective of hA(l)!

• Histogram equalization will help us:

– Stretch/Compress an image such that:
∗ Pixel values that occur frequently in A occupy a bigger dynamic range in B,

i.e., get stretched and become more visible.

∗ Pixel values that occur infrequently in A occupy a smaller dynamic range in B,

i.e., get compressed and become less visible.

– Compare images by “mapping” their histograms into a standard
histogram and sometimes “undo” the effects of some unknown
processing.

• The techniques we are going to use to get ge
A(l) are also applicable in

histogram modification/specification.
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Continuous Amplitude Random Variables

• Let χ be a continuous amplitude random variable χ ∈ (−∞, +∞).

fχ(x): the probability density function of χ,
Fχ(x): the probability distribution function of χ.

fχ(x)dx = Probability(x ≤ χ < x + dx) (1)

Fχ(x) = Probability(χ ≤ x) (2)

• Properties:

Fχ(x) =
∫ x

−∞ fχ(t)dt ⇒ dFχ(x)

dx
= fχ(x) (3)

fχ(x) ≥ 0 ⇒ Fχ(x) ≥ 0, Fχ(x + dx)− Fχ(x) ≥ 0 (4)

Fχ(x) is a non-decreasing function.
∫ +∞
−∞ fχ(t)dt = 1 ⇒ fχ(x)|x=+/−∞ = 0 (5)

Fχ(x)|x=+∞ = 1 (6)

Fχ(x)|x=−∞ = 0 (7)
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Example

Gaussian:

fχ(x) = 1√
2πσ2e

−(x−µ)2

2σ2

Uniform (a < b):

fχ(x) =





1
b−a a < x < b

0 otherwise
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Calculating the Mean and Variance

• Mean (µ):

µ =
∫ +∞
−∞ xfχ(x)dx (8)

Analogy: Average price of apples

– “I bought fχ(x)dx many apples at a price of x, ...”

– “Total price I paid: P =
∫ +∞
−∞ xfχ(x)dx.

– “Total number of apples I purchased: N =
∫ +∞
−∞ fχ(x)dx = 1.

– “My average price for the overall purchase: µ = P/N .

• Variance (σ2):

σ2 =
∫ +∞
−∞ (x− µ)2fχ(x)dx (9)
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Main Derivation

• We will now obtain a new random variable Y (fY (y), FY (y)) as a function

of the random variable χ, i.e., Y = g(χ).

• We wish to make Y a uniform random variable (a random variable having the

uniform probability density function) irrespective of the density of χ.

• Our main assumption will be:

– Assume Fχ(x) is a continuous and strictly increasing function
(compared to the general case of non-decreasing as in Equation 4)

– Note that such an Fχ(x) is one-to-one which will allow us to use
its inverse F−1

χ (x).
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Main Derivation - contd.

• Let Y = Fχ(χ), i.e., g(χ) = Fχ(χ). Note that Y ∈ [0, 1] and fY (y) = 0 if
y 6∈ [0, 1].

• Let us derive FY (y) for y ∈ [0, 1]:

FY (y) = Probability(Y ≤ y)

= Probability(Fχ(χ) ≤ y)

= Probability(χ ≤ F−1
χ (y))

= Fχ(F−1
χ (y))

= y

where the next to last step follows from Equation 2.

• Using Equation 3 and fY (y) = 0 if y 6∈ [0, 1], we have

fY (y) =





0 y < 0, y > 1

1 y ∈ [0, 1]
(10)

i.e., Y is a uniform random variable with a = 0 and b = 1.
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Discrete Amplitude Random Variables

• Let Θ be a discrete amplitude random variable.
Θ = xi for some i, . . . ,−1, 0, 1, . . ..
xi are a sequence of possible values for Θ.

pΘ(xi): the probability mass function of Θ,
FΘ(xi): the probability distribution function of Θ.

pΘ(xi) = Probability(Θ = xi) (11)

FΘ(xi) = Probability(Θ ≤ xi) (12)

• Properties:

FΘ(xi) =
j=i∑

j=−∞
pΘ(xj) (13)

pΘ(xi) = FΘ(xi)− FΘ(xi−1) ≥ 0 (14)
j=+∞∑

j=−∞
pΘ(xj) = 1 (15)
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Example

The probability mass and distribution functions for a uniform, discrete am-
plitude random variable.
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Derivation for Discrete Amplitude R.V.s

• Let Ω = FΘ(Θ). Ω = yi = FΘ(xi) for some i, . . . ,−1, 0, 1, . . ..

• Our earlier derivation for continuous amplitude random variables does
not “work” for discrete amplitude random variables.

• In general Ω is not a uniform random variable.
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Histogram as a Probability Mass Function

• For a given image A, consider the image pixels as the realizations of
a discrete amplitude random variable “A”.

– For example suppose we toss a coin (Heads=255 and Tails=0) N ×M

times and record the results as an N by M image matrix.

• Define the sample probability mass function pA(l) as the probability of
a randomly chosen pixel having the value l.

pA(l) =
hA(l)

NM
(16)

• Note that the sample mean and variance we talked about in Lecture
2 can be calculated as:

mA =
255∑

l=0
lpA(l)

σ2
A =

255∑

l=0
(l −mA)2pA(l)
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Histogram Equalizing Point Function

• Let g1(l) =
∑l

k=0 pA(k). Note that g1(l) ∈ [0, 1].

• ge
A(l) = round(255g1(l)) is the histogram equalizing point function for the

image A.

• Image A ⇒ “equalize image” ⇒ B(i, j) = ge
A(A(i, j)).

• As we have seen, in general pB(l) will not be a uniform probability
mass function but hopefully it will be close.

• In matlab >> help filter to construct ge
A(A(i, j)) fast.

• Assuming you gAe is an array that contains the computed ge
A(l), you

can use >> B = gAe(A + 1); to obtain the equalized image.
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Stretching and Compression

• ge
A(l) stretches the range of pixel values that occur frequently in A.

• ge
A(l) compresses the range of pixel values that occur infrequently in

A.
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Example
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Comparison/“Undoing”

Instead of comparing A and C, compare their equalized versions.
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Comparison/“Undoing” - contd.
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Summary

• In this lecture we learnt about simple histogram based image segmen-
tation and its limitations.

• We reviewed continuous and discrete amplitude random variables and
used their properties to derive the histogram equalizing point function.

• We also defined the relationship between image histograms and sam-
ple probability mass functions of images.

• Finally we looked at some equalization examples and learnt what to
expect from a histogram equalizing point function when applied on
an image.

• Please read Chapter 7, pages 241-244 in the textbook.
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Homework III

1. The histogram of an image A is hA(l) = l, (l = 0, . . . , 255). A point function

g(l) =





l 0 ≤ l < 128

255− l 128 ≤ l ≤ 255

Let B(i, j) = A(i, j). Calculate hB(l) without a computer. Show all your work.

2. Implement histogram based segmentation on your image. Identify the peaks of your histogram

with the “objects” that they correspond to. Show your image, its histogram, the ranges, etc.

Show the identified objects. Finally construct the histogram segmented image.

3. Derive the mean and variance for continuous amplitude Gaussian and uniform densities.

4. Equalize your image. Show before and after images and histograms. Is the histogram of the

equalized image uniform? Which regions got stretched/compressed? (Be as accurate as possible)

5. Implement the Comparison/“Undoing” example on your image.
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